Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation.
نویسندگان
چکیده
Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models are less efficient. The crucial step that has been missing when adjusting for covariates is that one must integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect. We apply the method of targeted maximum likelihood estimation (tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary outcomes. We show that the covariate adjustment in randomized trials using the logistic regression models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present simulation studies that demonstrate that this tMLE increases efficiency and power over the unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-specified.
منابع مشابه
Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequential Randomized Controlled Trials
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer,...
متن کاملTargeted maximum likelihood estimation for dynamic treatment regimes in sequentially randomized controlled trials.
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer,...
متن کاملSemiparametric estimation exploiting covariate independence in two-phase randomized trials.
Recent results for case-control sampling suggest when the covariate distribution is constrained by gene-environment independence, semiparametric estimation exploiting such independence yields a great deal of efficiency gain. We consider the efficient estimation of the treatment-biomarker interaction in two-phase sampling nested within randomized clinical trials, incorporating the independence b...
متن کاملA Simulation-Based Comparison of Covariate Adjustment Methods for the Analysis of Randomized Controlled Trials.
Covariate adjustment methods are frequently used when baseline covariate information is available for randomized controlled trials. Using a simulation study, we compared the analysis of covariance (ANCOVA) with three nonparametric covariate adjustment methods with respect to point and interval estimation for the difference between means. The three alternative methods were based on important mem...
متن کاملTargeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research
BACKGROUND Targeted maximum likelihood estimation has been proposed for estimating marginal causal effects, and is robust to misspecification of either the treatment or outcome model. However, due perhaps to its novelty, targeted maximum likelihood estimation has not been widely used in pharmacoepidemiology. The objective of this study was to demonstrate targeted maximum likelihood estimation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2009